2 Reading and Writing Data

This chapter contains recipes related to reading and writing data using Apache Arrow. When reading files into R using Apache Arrow, you can choose to read in your file as either a data frame or as an Arrow Table object.

There are a number of circumstances in which you may want to read in the data as an Arrow Table: * your dataset is large and if you load it into memory, it may lead to performance issues * you want faster performance from your dplyr queries * you want to be able to take advantage of Arrow’s compute functions

2.1 Converting from a data frame to an Arrow Table

You want to convert an existing data.frame or tibble object into an Arrow Table.

2.1.1 Solution

air_table <- Table$create(airquality)
air_table
## Table
## 153 rows x 6 columns
## $Ozone <int32>
## $Solar.R <int32>
## $Wind <double>
## $Temp <int32>
## $Month <int32>
## $Day <int32>
## 
## See $metadata for additional Schema metadata

2.2 Converting data from an Arrow Table to a data frame

You want to convert an Arrow Table to a data frame to view the data or work with it in your usual analytics pipeline. You can use either as.data.frame() or dplyr::collect() to do this.

2.2.1 Solution

air_df <- as.data.frame(air_table)
air_df
##     Ozone Solar.R Wind Temp Month Day
## 1      41     190  7.4   67     5   1
## 2      36     118  8.0   72     5   2
## 3      12     149 12.6   74     5   3
## 4      18     313 11.5   62     5   4
## 5      NA      NA 14.3   56     5   5
## 6      28      NA 14.9   66     5   6
## 7      23     299  8.6   65     5   7
## 8      19      99 13.8   59     5   8
## 9       8      19 20.1   61     5   9
## 10     NA     194  8.6   69     5  10
## 11      7      NA  6.9   74     5  11
## 12     16     256  9.7   69     5  12
## 13     11     290  9.2   66     5  13
## 14     14     274 10.9   68     5  14
## 15     18      65 13.2   58     5  15
## 16     14     334 11.5   64     5  16
## 17     34     307 12.0   66     5  17
## 18      6      78 18.4   57     5  18
## 19     30     322 11.5   68     5  19
## 20     11      44  9.7   62     5  20
## 21      1       8  9.7   59     5  21
## 22     11     320 16.6   73     5  22
## 23      4      25  9.7   61     5  23
## 24     32      92 12.0   61     5  24
## 25     NA      66 16.6   57     5  25
## 26     NA     266 14.9   58     5  26
## 27     NA      NA  8.0   57     5  27
## 28     23      13 12.0   67     5  28
## 29     45     252 14.9   81     5  29
## 30    115     223  5.7   79     5  30
## 31     37     279  7.4   76     5  31
## 32     NA     286  8.6   78     6   1
## 33     NA     287  9.7   74     6   2
## 34     NA     242 16.1   67     6   3
## 35     NA     186  9.2   84     6   4
## 36     NA     220  8.6   85     6   5
## 37     NA     264 14.3   79     6   6
## 38     29     127  9.7   82     6   7
## 39     NA     273  6.9   87     6   8
## 40     71     291 13.8   90     6   9
## 41     39     323 11.5   87     6  10
## 42     NA     259 10.9   93     6  11
## 43     NA     250  9.2   92     6  12
## 44     23     148  8.0   82     6  13
## 45     NA     332 13.8   80     6  14
## 46     NA     322 11.5   79     6  15
## 47     21     191 14.9   77     6  16
## 48     37     284 20.7   72     6  17
## 49     20      37  9.2   65     6  18
## 50     12     120 11.5   73     6  19
## 51     13     137 10.3   76     6  20
## 52     NA     150  6.3   77     6  21
## 53     NA      59  1.7   76     6  22
## 54     NA      91  4.6   76     6  23
## 55     NA     250  6.3   76     6  24
## 56     NA     135  8.0   75     6  25
## 57     NA     127  8.0   78     6  26
## 58     NA      47 10.3   73     6  27
## 59     NA      98 11.5   80     6  28
## 60     NA      31 14.9   77     6  29
## 61     NA     138  8.0   83     6  30
## 62    135     269  4.1   84     7   1
## 63     49     248  9.2   85     7   2
## 64     32     236  9.2   81     7   3
## 65     NA     101 10.9   84     7   4
## 66     64     175  4.6   83     7   5
## 67     40     314 10.9   83     7   6
## 68     77     276  5.1   88     7   7
## 69     97     267  6.3   92     7   8
## 70     97     272  5.7   92     7   9
## 71     85     175  7.4   89     7  10
## 72     NA     139  8.6   82     7  11
## 73     10     264 14.3   73     7  12
## 74     27     175 14.9   81     7  13
## 75     NA     291 14.9   91     7  14
## 76      7      48 14.3   80     7  15
## 77     48     260  6.9   81     7  16
## 78     35     274 10.3   82     7  17
## 79     61     285  6.3   84     7  18
## 80     79     187  5.1   87     7  19
## 81     63     220 11.5   85     7  20
## 82     16       7  6.9   74     7  21
## 83     NA     258  9.7   81     7  22
## 84     NA     295 11.5   82     7  23
## 85     80     294  8.6   86     7  24
## 86    108     223  8.0   85     7  25
## 87     20      81  8.6   82     7  26
## 88     52      82 12.0   86     7  27
## 89     82     213  7.4   88     7  28
## 90     50     275  7.4   86     7  29
## 91     64     253  7.4   83     7  30
## 92     59     254  9.2   81     7  31
## 93     39      83  6.9   81     8   1
## 94      9      24 13.8   81     8   2
## 95     16      77  7.4   82     8   3
## 96     78      NA  6.9   86     8   4
## 97     35      NA  7.4   85     8   5
## 98     66      NA  4.6   87     8   6
## 99    122     255  4.0   89     8   7
## 100    89     229 10.3   90     8   8
## 101   110     207  8.0   90     8   9
## 102    NA     222  8.6   92     8  10
## 103    NA     137 11.5   86     8  11
## 104    44     192 11.5   86     8  12
## 105    28     273 11.5   82     8  13
## 106    65     157  9.7   80     8  14
## 107    NA      64 11.5   79     8  15
## 108    22      71 10.3   77     8  16
## 109    59      51  6.3   79     8  17
## 110    23     115  7.4   76     8  18
## 111    31     244 10.9   78     8  19
## 112    44     190 10.3   78     8  20
## 113    21     259 15.5   77     8  21
## 114     9      36 14.3   72     8  22
## 115    NA     255 12.6   75     8  23
## 116    45     212  9.7   79     8  24
## 117   168     238  3.4   81     8  25
## 118    73     215  8.0   86     8  26
## 119    NA     153  5.7   88     8  27
## 120    76     203  9.7   97     8  28
## 121   118     225  2.3   94     8  29
## 122    84     237  6.3   96     8  30
## 123    85     188  6.3   94     8  31
## 124    96     167  6.9   91     9   1
## 125    78     197  5.1   92     9   2
## 126    73     183  2.8   93     9   3
## 127    91     189  4.6   93     9   4
## 128    47      95  7.4   87     9   5
## 129    32      92 15.5   84     9   6
## 130    20     252 10.9   80     9   7
## 131    23     220 10.3   78     9   8
## 132    21     230 10.9   75     9   9
## 133    24     259  9.7   73     9  10
## 134    44     236 14.9   81     9  11
## 135    21     259 15.5   76     9  12
## 136    28     238  6.3   77     9  13
## 137     9      24 10.9   71     9  14
## 138    13     112 11.5   71     9  15
## 139    46     237  6.9   78     9  16
## 140    18     224 13.8   67     9  17
## 141    13      27 10.3   76     9  18
## 142    24     238 10.3   68     9  19
## 143    16     201  8.0   82     9  20
## 144    13     238 12.6   64     9  21
## 145    23      14  9.2   71     9  22
## 146    36     139 10.3   81     9  23
## 147     7      49 10.3   69     9  24
## 148    14      20 16.6   63     9  25
## 149    30     193  6.9   70     9  26
## 150    NA     145 13.2   77     9  27
## 151    14     191 14.3   75     9  28
## 152    18     131  8.0   76     9  29
## 153    20     223 11.5   68     9  30

2.3 Writing a Parquet file

You want to write Parquet files to disk.

2.3.1 Solution

# Create table
my_table <- Table$create(data.frame(group = c("A", "B", "C"), score = c(99, 97, 99)))
# Write to Parquet
write_parquet(my_table, "my_table.parquet")

2.4 Reading a Parquet file

You want to read a Parquet file.

2.4.1 Solution

parquet_tbl <- read_parquet("my_table.parquet")
parquet_tbl
##   group score
## 1     A    99
## 2     B    97
## 3     C    99

As the argument as_data_frame was left set to its default value of TRUE, the file was read in as a data.frame object.

class(parquet_tbl)
## [1] "data.frame"

2.4.2 Discussion

If you set as_data_frame to FALSE, the file will be read in as an Arrow Table.

my_table_arrow_table <- read_parquet("my_table.parquet", as_data_frame = FALSE)
my_table_arrow_table
## Table
## 3 rows x 2 columns
## $group <string>
## $score <double>
## 
## See $metadata for additional Schema metadata
class(my_table_arrow_table)
## [1] "Table"        "ArrowTabular" "ArrowObject"  "R6"

2.5 Read a Parquet file from S3

You want to read a Parquet file from S3.

2.5.1 Solution

df <- read_parquet(file = "s3://ursa-labs-taxi-data/2019/06/data.parquet")

2.5.2 See also

For more in-depth instructions, including how to work with S3 buckets which require authentication, you can find a guide to reading and writing to/from S3 buckets here: https://arrow.apache.org/docs/r/articles/fs.html.

2.6 Filter columns while reading a Parquet file

You want to specify which columns to include when reading in a Parquet file.

2.6.1 Solution

# Create table to read back in 
dist_time <- Table$create(data.frame(distance = c(12.2, 15.7, 14.2), time = c(43, 44, 40)))
# Write to Parquet
write_parquet(dist_time, "dist_time.parquet")

# Read in only the "time" column
time_only <- read_parquet("dist_time.parquet", col_select = "time")
time_only
##   time
## 1   43
## 2   44
## 3   40

2.7 Write an IPC/Feather V2 file

You want to read in a Feather file.

2.7.1 Solution

my_table <- Table$create(data.frame(group = c("A", "B", "C"), score = c(99, 97, 99)))
write_feather(my_table, "my_table.arrow")

2.7.2 Discussion

For legacy support, you can write data in the original Feather format by setting the version parameter to 1.

# Create table
my_table <- Table$create(data.frame(group = c("A", "B", "C"), score = c(99, 97, 99)))
# Write to Feather format V1
write_feather(mtcars, "my_table.feather", version = 1)

2.8 Read a Feather file

You want to read a Feather file.

2.8.1 Solution

my_feather_tbl <- read_feather("my_table.arrow")

2.9 Write Streaming IPC Files

You want to write to the IPC stream format.

2.9.1 Solution

# Create table
my_table <- Table$create(
  data.frame(
    group = c("A", "B", "C"),
    score = c(99, 97, 99)
    )
)
# Write to IPC stream format
write_ipc_stream(my_table, "my_table.arrows")

2.10 Read Streaming IPC Files

You want to read from the IPC stream format.

2.10.1 Solution

my_ipc_stream <- arrow::read_ipc_stream("my_table.arrows")

2.11 Reading and Writing CSV files

You can use write_csv_arrow() to save an Arrow Table to disk as a CSV.

write_csv_arrow(cars, "cars.csv")

You can use read_csv_arrow() to read in a CSV file as an Arrow Table.

my_csv <- read_csv_arrow("cars.csv", as_data_frame = FALSE)

2.12 Read JSON files

You want to read a JSON file.

2.12.1 Solution

# Create a file to read back in 
tf <- tempfile()
writeLines('
    {"country": "United Kingdom", "code": "GB", "long": -3.44, "lat": 55.38}
    {"country": "France", "code": "FR", "long": 2.21, "lat": 46.23}
    {"country": "Germany", "code": "DE", "long": 10.45, "lat": 51.17}
  ', tf, useBytes = TRUE)

# Read in the data
countries <- read_json_arrow(tf, col_select = c("country", "long", "lat"))
countries
## # A tibble: 3 × 3
##   country         long   lat
##   <chr>          <dbl> <dbl>
## 1 United Kingdom -3.44  55.4
## 2 France          2.21  46.2
## 3 Germany        10.4   51.2

2.13 Write Partitioned Data

You want to save data to disk in partitions based on columns in the data.

2.13.1 Solution

write_dataset(airquality, "airquality_partitioned", partitioning = c("Month", "Day"))
list.files("airquality_partitioned")
## [1] "Month=5" "Month=6" "Month=7" "Month=8" "Month=9"

As you can see, this has created folders based on the first partition variable supplied, Month.

If you take a look in one of these folders, you will see that the data is then partitioned by the second partition variable, Day.

list.files("airquality_partitioned/Month=5")
##  [1] "Day=1"  "Day=10" "Day=11" "Day=12" "Day=13" "Day=14" "Day=15" "Day=16"
##  [9] "Day=17" "Day=18" "Day=19" "Day=2"  "Day=20" "Day=21" "Day=22" "Day=23"
## [17] "Day=24" "Day=25" "Day=26" "Day=27" "Day=28" "Day=29" "Day=3"  "Day=30"
## [25] "Day=31" "Day=4"  "Day=5"  "Day=6"  "Day=7"  "Day=8"  "Day=9"

Each of these folders contains 1 or more Parquet files containing the relevant partition of the data.

list.files("airquality_partitioned/Month=5/Day=10")
## [1] "part-9.parquet"

2.14 Reading Partitioned Data

You want to read partitioned data.

2.14.1 Solution

# Read data from directory
air_data <- open_dataset("airquality_partitioned")

# View data
air_data
## FileSystemDataset with 153 Parquet files
## Ozone: int32
## Solar.R: int32
## Wind: double
## Temp: int32
## Month: int32
## Day: int32
## 
## See $metadata for additional Schema metadata
unlink("airquality_partitioned", recursive = TRUE)